Ten charges are placed on the circumference of a circle of radius R with constant angular separation between successive charges. Alternate charges 1, 3, 5, 7, 9 have charge (+q) each, while 2, 4, 6, 8, 10 have charge (-q) each. The potential V and the electric field E at the centre of the circle are respectively:

(Take V = 0 at infinity)

[Main Sep. 05, 2020 (II)]

(a)
$$V = \frac{10q}{4\pi\epsilon_0 R}$$
; $E = 0$

(b)
$$V = 0$$
; $E = \frac{10q}{4\pi\epsilon_0 R^2}$

(c)
$$V=0; E=0$$

(b)
$$V = 0$$
; $E = \frac{10q}{4\pi\epsilon_0 R^2}$
(c) $V = 0$; $E = 0$
(d) $V = \frac{10q}{4\pi\epsilon_0 R}$; $E = \frac{10q}{4\pi\epsilon_0 R^2}$

(c) Potential at the centre,
$$V_C = \frac{KQ_{\text{net}}}{R}$$

$$\therefore Q_{\text{net}} = 0$$

$$\therefore V_C = 0$$

Let E be electric field produced by each charge at the centre, then resultant electric field will be $E_C = 0$, since equal electric field vectors are acting at equal angle so their resultant is equal to zero.

